

QUICK START GUIDE

Problem-Based Optimization with Optimization Toolbox™

Use a natural syntax for defining and solving linear and mixed-integer linear, quadratic, linear least squares, and nonlinear optimization problems.

1. Define Problem

Following the *problem-based workflow*, first create an optimization problem with **optimproblem** to hold the objective, constraints, and associated variables.

Examples:

```
assignmentProb = optimproblem
responseProb = optimproblem
```

2. Define Variables

Create optimization variables with **optimuar**. Set display name and optional dimensions, bounds, and type. Index with integers or character strings.

Examples:

```
x = optimvar("x");
y = optimvar("y");

employees = ["a","b","c"];
tasks = ["t1","t2","t3"];
assign = optimvar("assign",employees,tasks,"LowerBound",0,"UpperBound",1,"Type","integer")
```

3. Define Expressions to Use in Objective and Constraints

Directly specify an **OptimizationExpression** that is a ratio of polynomials.

Examples:

```
response = -3*(y - x.^3 - x).^2 - (x - 4/3).^2;
totalCost = sum(sum(cost.*assign));
sumByEmployee = sum(assign,2);
sumByTask = sum(assign,1);
```

Specify other expressions as MATLAB functions and convert to optimization expressions with **fcn2optimexpr**.

Examples:

```
a = 4;
xyfcn = @(x,y,a)exp(y)*a*x.^2;
xyexpr = fcn2optimexpr(xyfcn,x,y,a);
```

4. Define Objective

Set the *sense* of the optimization. Set the *objective function* with a scalar **OptimizationExpression**.

Examples:

```
responseProb.ObjectiveSense = "maximize";
responseProb.Objective = response;
assignmentProb.ObjectiveSense = "minimize";
assignmentProb.Objective = totalCost;
```

5. Define Constraints

Combine OptimizationExpressions with a relational operator to specify an OptimizationConstraint. Assign to a problem.

Examples:

```
responseProb.Constraints.ellipse = x.^2/2 + y.^2/4 \le 1;
responseProb.Constraints.xyconstr = xyexpr >= 1;
assignmentProb.Constraints.oneTaskPerEmployee = sumByTask <= 1;</pre>
assignmentProb.Constraints.oneEmployeePerTask = sumByEmployee == 1;
```

6. Review

Display with showexpr, showconstr, showbounds, and showproblem.

View with the Workspace browser.

7. Solve and Analyze

Solve the problem, returning the solution values, objective value, and reason the solver stopped. Provide an initial point for nonlinear problems.

Example:

```
x0.x = 0;
x0.y = 0;
[sol,fval,exitflag] = solve(responseProb,x0)
  sol = struct with fields:
     x: 0.8883
      y: 1.5563
  fval = -0.2013
  exitflag =
      OptimalSolution
```

Solve with optimization options.

Example:

```
o = optimoptions(assignProb,"MaxTime",10);
sol = solve(assignmentProb,"Options",o)
```

Do More

- Use evaluate and infeasibility to analyze results
- Interpret and improve results
- Convert to solver-based form with prob2struct
- Include derivatives

Learn more: mathworks.com/help/optim