

Demystifying Deep Learning

A Practical Approach in MATLAB

What is Deep Learning?

Deep learning is a type of machine learning in which a model learns to perform tasks directly from image, time-series or text data.

Deep learning is usually implemented using a **neural network** architecture.

Example 1: Object recognition using deep learning

	Training (GPU)	fillions of images from 1000 ifferent categories	
	Prediction	Real-time object recognition using a webcam connected to a laptop	

Example 2: Detection and localization using deep learning

Regions with Convolutional Neural Network Features (R-CNN)

Semantic Segmentation using SegNet

Example 3: Analyzing signal data using deep learning

Signal Classification using LSTMs

Speech Recognition using CNNs

Agenda

Why deep learning?

Fashion MNIST: The "Hello, World!" of deep learning

Transfer learning with CNNs

(optional) Semantic segmentation

(optional) Deep learning with time series data

Ground Truth Labeling for datasets

Everything else in deep learning...

Diverse Applications of Deep Learning

Iris Recognition – 99.4% accuracy¹

MatConvnet

Rain Detection and Removal³

MatCaffe

Human Aware Navigation for Robots²

MatConvnet

- 1. Source: An experimental study of deep convolutional features for iris recognition Signal Processing in Medicine and Biology Symposium (SPMB), 2016 IEEE Shervin Minaee; Amirali Abdolrashidiy; Yao Wang; An experimental study of deep convolutional features for iris recognition
- 2. "A Real-Time Pedestrian Detector using Deep Learning for Human-Aware Navigation" David Ribeiro, Andre Mateus, Jacinto C. Nascimento, and Pedro Miraldo
- 3. Deep Joint Rain Detection and Removal from a Single Image" Wenhan Yang, Robby T. Tan, Jiashi Feng, Jiaying Liu, Zongming Guo, and Shuicheng Yan

Why is Deep Learning So Popular Now?

Deep Learning Enablers

Increased GPU acceleration

World-class models

AlexNet

PRETRAINED MODEL

Caffe IMPORTER **VGG-16 PRETRAINED**

2013

70

60

50

30

20

10

Speedup

GoogLeNet

MODEL

PRETRAINED MODEL

ResNet-50

2014

PRETRAINED MODEL

2015

60x Faster Training in 3 Years

TensorFlow-Keras

IMPORTER

ONNX Converter

2016

MODEL CONVERTER

Inception-v3 MODELS

Labeled public datasets

Machine Learning vs Deep Learning

Deep learning performs end-to-end learning by learning features, representations and tasks directly from images, text and sound

Deep learning algorithms also scale with data – traditional machine learning saturates

Deep Learning Workflow

ACCESS AND EXPLORE DATA

LABEL AND PREPROCESS
DATA

DEVELOP PREDICTIVE MODELS

INTEGRATE MODELS WITH
SYSTEMS

Databases

Sensors

Data Augmentation/ Transformation

Labeling Automation

Import Reference Models

Hardware-Accelerated Training

Hyperparameter Tuning

Network Visualization

Desktop Apps

Enterprise Scale Systems

Embedded Devices and Hardware

Agenda

Why deep learning?

Fashion MNIST: The "Hello, World!" of deep learning

Transfer learning with CNNs

(optional) Semantic segmentation

(optional) Deep learning with time series data

Ground Truth Labeling for datasets

Everything else in deep learning...

Fashion-MNIST Dataset

What?	A collection if items such as bags, shoes, etc.
Why?	Benchmark machine learning algorithms
How many?	60,000 training images 10,000 test images
Best results?	96.3% accuracy

Sources: https://github.com/zalandoresearch/fashion-mnist

Convolutional Neural Networks (CNN)

"Deep" in deep learning refers to number of layers

Long Short Term Memory Networks

- Recurrent Neural Network that carries a memory cell throughout the process
- Sequence Problems

Agenda

Why deep learning?

Fashion MNIST: The "Hello, World!" of deep learning

Transfer learning with CNNs

(optional) Semantic segmentation

(optional) Deep learning with time series data

Ground Truth Labeling for datasets

Everything else in deep learning...

Agenda

Why deep learning?

Fashion MNIST: The "Hello, World!" of deep learning

Transfer learning with CNNs

(optional) Semantic segmentation

(optional) Deep learning with time series data

Ground Truth Labeling for datasets

Everything else in deep learning...

Two Approaches for Deep Learning

1. Train a Deep Neural Network from Scratch

2. Fine-tune a pre-trained model (transfer learning)

Load pretrained network Early layers that learned Last layers that learned task (edges, blobs, colors) 1 million images 1000s classes

Example: Food classifier using deep transfer learning

Caesar salad

French fries

Burgers

Pizza

Sushi

<u>5</u> Category Classifier

Load pretrained network Early layers that learned Last layers that learned task (edges, blobs, colors) 1 million images 1000s classes

Why Perform Transfer Learning

- Requires less data and training time
- Reference models (like AlexNet, VGG-16, VGG-19, Inception-v3) are great feature extractors

Leverage best network types from top researchers AlexNet

(list of all models)

VGG-16

PRETRAINED MODEL

Caffe

IMPORTER

MODEL

GoogLeNet **PRETRAINED MODEL**

ResNet-50 PRETRAINED MODEL

TensorFlow-Keras

IMPORTER

ONNX Converter

MODEL CONVERTER

Inception-v3 MODELS

Import the Latest Models for Transfer Learning

Pretrained Models*

- AlexNet
- VGG-16
- VGG-19
- GoogLeNet
- Inception-v3
- ResNet-18
- ResNet-50
- ResNet-101
- Inception-resnet-v2
- SqueezeNet
- DenseNet-201

Import Models from Frameworks

- Caffe Model Importer
- TensorFlow-Keras Model Importer
- ONNX Converter (Import and Export)

AlexNet PRETRAINED MODEL	VGG-16 PRETRAINED MODEL	ResNet-50 PRETRAINED MODEL	ResNet-101 PRETRAINED MODEL	
Caffe	GoogLeNet PRETRAINED MODEL	TensorFlow- Keras	Inception-v3	

^{*} single line of code to access model

Integration with Other Frameworks

A short recap...

What we covered in this section...

Transfer learning

Easily modify existing networks with one-line commands

Access large datasets

Using the imageDatastore

Visualize and Analyze Networks

Using the network Analyzer

Make training faster

Freezing the layers

Improve training results

- Data augmentation with augmentedImageDataStore
- Automatic parameter selection with Bayesian hyperparameter tuning

Optional Demo: Image or Signal Data

Semantic Segmentation using SegNet

Signal Classification using LSTMs

Agenda

Why deep learning?

Fashion MNIST: The "Hello, World!" of deep learning

Transfer learning with CNNs

(optional) Semantic segmentation

(optional) Deep learning with time series data

Ground Truth Labeling for datasets

Everything else in deep learning...

Agenda

Why deep learning?

Fashion MNIST: The "Hello, World!" of deep learning

Transfer learning with CNNs

(optional) Semantic segmentation

(optional) Deep learning with time series data

Ground Truth Labeling for datasets

Everything else in deep learning...

What is semantic segmentation?

Original Image

ROI detection

Pixel classification

Semantic Segmentation

CamVid Dataset

- 1. Segmentation and Recognition Using Structure from Motion Point Clouds, ECCV 2008
- 2. Semantic Object Classes in Video: A High-Definition Ground Truth Database, Pattern Recognition Letters

Semantic Segmentation Network

Semantic Segmentation Network

Useful Tools for Semantic Segmentation

- Automatically create network structures
 - Using segnetLayers and fcnLayers
- Handle pixel labels
 - Using the pixelLabelImageDatastore and pixelLabelDatastore
- Evaluate network performance
 - Using evaluateSemanticSegmentation
- Examples and tutorials to learn concepts

Agenda

Why deep learning?

Fashion MNIST: The "Hello, World!" of deep learning

Transfer learning with CNNs

(optional) Semantic segmentation

(optional) Deep learning with time series data

Ground Truth Labeling for datasets

Everything else in deep learning...

Agenda

Why deep learning?

Fashion MNIST: The "Hello, World!" of deep learning

Transfer learning with CNNs

(optional) Semantic segmentation

(optional) Deep learning with time series data

Ground Truth Labeling for datasets

Everything else in deep learning...

I was born in France. I speak _____?

I was born in France...

[2000 words]

... I speak _____?

Time Series Classification (Human Activity Recognition)

Long short-term memory networks

- Dataset is accelerometer and gyroscope signals captured with a smartphone
- Data is a collection of time series with 9 channels

LSTM sequences

Agenda

Why deep learning?

Fashion MNIST: The "Hello, World!" of deep learning

Transfer learning with CNNs

(optional) Semantic segmentation

(optional) Deep learning with time series data

Ground Truth Labeling for datasets

Everything else in deep learning...

Agenda

Why deep learning?

Fashion MNIST: The "Hello, World!" of deep learning

Transfer learning with CNNs

(optional) Semantic segmentation

(optional) Deep learning with time series data

Ground Truth Labeling for datasets

Everything else in deep learning...

"I love to label and preprocess my data"

~ Said no engineer, ever.

Ground truth Labeling

"How do I *label* my data?"

New App for Ground Truth Labeling

Label pixels and regions for semantic segmentation

Data

Attributes and Sublabels

Agenda

Why deep learning?

Fashion MNIST: The "Hello, World!" of deep learning

Transfer learning with CNNs

(optional) Semantic segmentation

(optional) Deep learning with time series data

Ground Truth Labeling for datasets

Everything else in deep learning...

Agenda

Why deep learning?

Fashion MNIST: The "Hello, World!" of deep learning

Transfer learning with CNNs

(optional) Semantic segmentation

(optional) Deep learning with time series data

Ground Truth Labeling for datasets

Everything else in deep learning...

Training Performance and Scalability

Deep Learning on CPU, GPU, Multi-GPU and Clusters

Single CPU

Single CPU Single GPU

Single CPU, Multiple GPUs

On-prem server with GPUs

HOW TO TARGET?

```
opts = trainingOptions('sgdm', ...
    'MaxEpochs', 100, ...
    'MiniBatchSize', 250, ...
    'InitialLearnRate', 0.00005, ...

'ExecutionEnvironment', 'auto' );
```

```
opts = trainingOptions('sgdm', ...
    'MaxEpochs', 100, ...
    'MiniBatchSize', 250, ...
    'InitialLearnRate', 0.00005, ...

'ExecutionEnvironment', 'multi-gpu' );
```

```
opts = trainingOptions('sgdm', ...
    'MaxEpochs', 100, ...
    'MiniBatchSize', 250, ...
    'InitialLearnRate', 0.00005, ...

'ExecutionEnvironment', 'parallel' );
```


Inference Performance and Deployment

Using Coder Products with Deep Learning

Integrate Deep Learning within Systems

.

Deploying Deep Learning Models for Inference

Deploying to Various Targets

NVIDIA
TensorRT &
cuDNN
Libraries

With GPU Coder, MATLAB is fast

Faster than TensorFlow, MXNet, and PyTorch

Semantic Segmentation

MATLAB Production Server is an application server that publishes MATLAB code as APIs that can be called by other applications

Other Features

Define new deep neural network layers


```
function [dLdX, dLdAlpha] = backward(layer, X, Z, dLdZ, memory)
    % Backward propagate the derivative of the loss function through
    % the layer

dLdX = layer.Alpha .* dLdZ;
    dLdX(X>0) = dLdZ(X>0);
    dLdAlpha = min(0,X) .* dLdZ;
    dLdAlpha = sum(sum(dLdAlpha,1),2);
```


Object Detection Frameworks

- Single line of code to train a detector
- Includes:
 - R-CNN
 - Fast R-CNN
 - Faster R-CNN

Create Custom Object Detectors

trainACFObjectDetector	Train ACF object detector
trainCascadeObjectDetector	Train cascade object detector model
trainFastRCNNObjectDetector	Train a Fast R-CNN deep learning object detector
trainFasterRCNNObjectDetector	Train a Faster R-CNN deep learning object detector
trainImageCategoryClassifier	Train an image category classifier
trainRCNNObjectDetector	Train an R-CNN deep learning object detector

Deep learning features overview

- Classification
- Regression *
- Semantic segmentation
- Object detection *
- Scalability *
 - Multiple GPUs
 - Cluster or cloud
- Custom network layers *
- Import models *
 - Caffe
 - Keras/TensorFlow

- Data augmentation *
- Hyperparameter tuning *
 - Bayesian optimization
- Python MATLAB interface *
- LSTM networks *
 - Time series, signals, audio
- Custom labeling *
 - API for ground-truth labeling automation
 - Superpixels
- Data validation *
 - Training and testing

MATLAB products for deep learning

Required products

- Deep Learning Toolbox
- Parallel Computing Toolbox
- Image Processing Toolbox
- Computer Vision System Toolbox

Optional products

- Statistics and Machine Learning Toolbox
- Signal Processing Toolbox
- Text Analytics Toolbox
- Wavelet Toolbox
- MATLAB Coder
- GPU Coder
- Automated Driving System Toolbox

Free resources

- Guided evaluations with a MathWorks deep learning engineer
- Proof-of-concept projects
- Deep learning hands-on workshop
- Seminars and technical deep dives
- Deep learning onramp course

More options

- Consulting services
- Training courses
- Technical support
- Advanced customer support
- Installation, enterprise, and cloud deployment
- Deep Learning Paid Training

Consulting – Deep Learning Discovery

Step 1: Project Assessment

- Proposal for workflow
- Recommendations for methodology & next steps
- Recommendations for tools & licenses
- Tailored slide deck and presentation

Step 2: Intro to Deep Learning

- Presentation of relevant demos and examples
- Starter code samples
- Guidance regarding further training
- Pointers for additional technical support

Thank you!

APPENDIX: Extra Slides

Convolutional Neural Networks

- Train "deep" neural networks on structured data (e.g. images, signals, text)
- Implements Feature Learning: Eliminates need for "hand crafted" features
- Trained using GPUs for performance

Convolutional Neural Networks

Convolution Layer

- Core building block of a CNN
- Convolve the filters sliding them across the input, computing the dot product

Intuition: learn filters that activate when they "see" some specific feature

Convolution Layer – Choosing Hyperparameters

- Number of filters, K
- Filter size, F
- Stride, S
- Zero padding, P

$$W_2 = (W_1 - F + 2P)/S + 1$$

 $H_2 = (H_1 - F + 2P)/S + 1$
 $D_2 = K$

Rectified Linear Unit (ReLU) Layer

- Frequently used in combination with Convolution layers
- Do not add complexity to the network
- Most popular choice: f(x) = max(0, x), activation is thresholded at 0

Benefits of Batch Normalization

- Batch normalization reduces the problem of internal covariate shift
 - Internal covariate shift: Neural networks can be slow to train because of low learning rates and careful parameter optimization – because each layer's inputs change in distribution during training
- It enables higher learning rates
- It regularizes the model
- Source: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift (https://arxiv.org/pdf/1502.03167v3.pdf)

Pooling Layer

- Perform a downsampling operation across the spatial dimensions
- Goal: progressively decrease the size of the layers
- Max pooling and average pooling methods
- Popular choice: Max pooling with 2x2 filters, Stride = 2

