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Deep Learning Demo

Image Classification
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Introduction

@’ Demo 1: Deep learning in 6 lines of code

Deep Learning Fundamentals

% Demo 2 and 3: Exploring pretrained networks/Classifying handwritten digits
% Demo 4: Transfer Learning — OR — Non Image Exercise

% Demo: Deploying Deep Networks— OR — Improving Network Accuracy

Conclusion
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Deep Learning Applications

Voice assistants (speech to text)
Teaching character to beat video game

Automatically coloring black and white images
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Deep Learning

What is




&\ MathWorks

What is Deep Learning?

= Subset of machine learning with automatic feature extraction
— Learns features and tasks directly from data

— More Data = better model

Deep Learning

Machine l
Learning CAR v/

LEARNED FEATURES 3 TRUCK X

Deep = I | ;
Learning b
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Shell

Veoneer

Applications of Deep Learning

« $10m'’s spent on land seismic acquisition each year.

« Terrain type very important to daily shot target.

« Currently manually drawn polygons on satellite/drone
images + direct site visits - weeks.

+ We replace whole workflow with DL semantic segmentation

approach (segnet).

Radar image with rough polygons overlaid

Terrain Recognition with Hyperspectral Data

*

LiDAR-Based Sensor Verification

Equipment Classification

Genentech

Caterpillar
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Deep Learning Models can Surpass Human Accuracy.
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Source: ILSVRC Top-5 Error on ImageNet
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Deep Learning Enablers

Increased GPU acceleration

60x Faster Training in 3 Years

Speedup

70
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2014

2015 2016

AlexNet

PRETRAINED MODEL

ResNet

PRETRAINED MODEL

Labeled public datasets

World-class models

VGG-16/19

PRETRAINED MODEL

GooglLeNet

PRETRAINED MODEL

Caffe

MODEL IMPORTER

TensorFlow-Keras
MODEL IMPORTER
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Image

Numeric

AgeCat
Under 38
Under 30
Under 30
Under 30
30-39
36-39
36-39
30-39
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Over 40
Over 40

WeightQ
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04
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Q3
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Q3
04

Deep Learning Datatypes

GroupCount

mean_BloodPressure

123.17 79.667
120.33 79.667
127.5 86.5

122 78
121.75 81.75
119.56 82.556

121 83.222
125.55 87.273
122.14 84.714
123.38 79.385
123.97 84.643
124.6 85.1
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Wide Domain Support for Deep Learning in MATLAB
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Let’s try it out!

Open: DeeplLearningin6lLines.mlx
in folder 01-Deeplearningln6lines
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Deep Learning Uses a Neural Network Architecture
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Thinking about Layers

* Layers are like blocks

— Stack on top of each other
— Replace one block with a different
one
* Each hidden layer processes the
information from the previous
layer

(i



TECHS())URCE

Thinking about Layers

* Layers are like blocks
— Stack on top of each other

— Replace one block with a different
one
* Each hidden layer processes the
information from the previous
layer

* Layers can be ordered in different
ways
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Convolutional Neural Networks (CNNs)

» Special layer combinations that make them great for image classification

— Convolution Layer
— Max Pooling Layer
— RelLU Layer
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These patterns would be commoninthe numberO
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« Pattern starts at left corner

 Reach end of image
 Repeat for next pattern
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l lll== l= These patterns would be common inthe numberO
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=====.===== This image would not match well

against the patterns for the
number zero

It would only do . .
very well against . .
this pattern .
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Max Pooling is a down-sampling operation
Shrink large images while preserving important information

3 4 8 3 2x2 filters 4 3

—

1 4 6 5 Stride Length =2
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Rectified Linear Units Layer (ReLU)

Typically converts negative numbers to zero
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CNNs End with 3 Layers

* Fully Connected Layer
— Looks at which high-level features correspond to a specific category
— Calculates scores for each category (highest score wins)

vl
* Softmax Layer
— Turns scores into probabilities. |
.« pe . | 8
* Classification Layer 6 4 -2 o 2 a4 s

— Categorizes image into one of the classes that the network is trained on



Questions?
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ResNet-v2

( Inception- v3) ( ResNet-101 ) ( VGG-16 ) .
< Inception- >

Keras-Tensorflow Caffe Model ONNX Model
Importer Importer Converter
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Model Exchange with MATLAB

(PyTOrCh) < Keras- >
T

( Caffe? K | ensorflow

( MXNet H ONNX }—»(I\/IATLAB)

Open eural N]stwork Exchange T

(Gore ) (eNTK ) () (_cale )
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Let’s try it out!

Exercise: Work_ExploringPretrainedNetworks.mlx
in folder 02-PretrainedModelExercise




TECHS())URCE

Takeaways (Pretrained Models)

* Pre-trained networks have a pre-determined layer order that
makes them effective for classifying images

— Typically trained to classify lots of images

* Different networks yield different results

* Great starting point, but not consistently accurate
— WEe'll fix this later with transfer learning!
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PREPARE DATA TRAIN MODEL DEPLOY SYSTEM

O Data access and
N\ preprocessing

/7 Ground truth labeling

Simulation-based
data generation

h lteration

Model design, Multiplatform code

Hyperparameter generation (CPU,
tuning GPU)

Model exchange Edge deployment
across frameworks

Hardware-
accelerated
training

Enterprise
Deployment
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3 Components to Train a Network

Data Network Training
Architecture Options

How much data? Define Inputs and Influence training
layers for deep time and accuracy
learning

« Solver type
It depends...but Initial Learn Rate

ALOT « Minibatch Size
« Max Epochs
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Exercise: MNIST _HandwritingRecognition.mlx
In folder 03-MNISTEXercise
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Takeaways (MNIST)

* Deep learning for image classification uses CNNs

* CNNs can have different combinations of initial layers but usually end
with:
— Fully Connected Layer

— Softmax Layer
— Classification Layer

* Important factors that affect accuracy and training time

— Network architecture
— Initial learning rate
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Two Approaches for Deep Learning

1. Train a Deep Neural Network from Scratch

CONVOLUTIONAL NEURAL NETWORK (CNN] CAR «
LEARNED FEATURES -95% 7|
3% TRUCK X
/A ™
\ o o L 2% J] .

BICYCLE X

FINE-TUNE NETWORK WEIGHTS

: 8 CAT X
% PRE-TRAINED CNN H NEW TASK
L DOG v
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Transfer Learning Workflow

Load pretrained network Replace final layers Train network Predictand assess
| network accuracy
Early layers that learned Lastlayers that New layers to learn Training images
low-level features learned task features specific
(edges, blobs, colors)  specific features to your data

Test images
Training options '
. I w Trained Network

Fewer classes 100s images
Learn faster 10s classes

T

1 million images
1000s classes

Deploy results

——

Boat

Probability
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Transfer Learning Workflow — Step 1

Load pretrained network

Early layers learn low- Last layers
level features (edges, learn task-
blobs, colors) specificfeatures

( A \ /—A—\

1 million images
1000s classes
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Transfer Learning Workflow — Step 2

Replacefinal layers

New layers learn
features specific
to your data

——

Fewer classes
Learn faster




TECHS()URCE

Transfer Learning Workflow — Step 3

Train network

- Training images

Tralnlng options

100simages
10sclasses
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Transfer Learning Workflow — Step 4

Predict and assess
network accuracy

E Testimages

[ Trained Network ]
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Transfer Learning Workflow — Step 5

Deploy results

Probability
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Transfer Learning Workflow

Load pretrained network Replace final layers Train network Predictand assess
| network accuracy
Early layers that learned Lastlayers that New layers to learn Training images
low-level features learned task features specific
(edges, blobs, colors)  specific features to your data

Test images
Training options '
. I w Trained Network

Fewer classes 100s images
Learn faster 10s classes

T

1 million images
1000s classes

Deploy results

——

Boat

Probability
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Let’s try it out!

Exercise: Work_SeeFoodTransferLearning.mlx
in folder 04-TransferLearningExercise
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Takeaways — Transfer Learning

Replace last layers with our own layers

Efficient way to modify pre-trained models to our needs
Use an Image datastore when working with lots of images
MATLAB lets you visualize activations in a network
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Recurrent Neural Networks

Sequence Fully Connected Softmax Classification
LSTM Layer — —
Input Layer Layer Layer Output Layer

Classification

Sequence LSTM Layer Fully Connected __,  Regression
Input Layer Layer Output Layer

Regression
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Types of Datasets

. (. )
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LSTM = Long Short Term Series Network (more detail in later slides)
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| was born in France...
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Take into account previous data when making new predictions

Recurrent Neural Networks

‘—
Output is used with next time step

4 )
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| was born in France...

[2000 words]

... | speak
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Recurrent Neural Network that carries a memory cell (state) throughout the process

Long Short-Term Memory Network

Output is used with next time step

-

!

§
—n
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Examples in MATLAB Documentation

Sequence Classification
Using Deep Learning

Classify sequence data using a long
short-term memory (LSTM) netwaork.

Open Live Script

Irniming Data

thundersmrm mmrtect
damage COUNY waier

miles =™ Secwtes

wama WINA R oo
S sﬁz;“trees wﬁam"d Highway

gl reported ear_“"

- snNow es

_several area 4 nch e s MP
= QUL Y oW o
flooding =measured

it icaog "=

4 [
Classify Text Data Using
Deep Learning

Classify text descriptions of weather
reports using a deep learning long
short-term memory (LSTM) network.

Open Live Script

Time Series Forecasting
Using Deep Learning

Forecast time series data using a
long short-term memory (LSTM)
network.

Open Live Script

Generate Text Using Deep
Learning

Train a deep leaming long short-
term memory (LSTM) network to
generate text.

Open Live Script

Speech Command
Recognition Using Deep
Learning

Train a simple deep leaming model
that detects the presence of speech
commands in audio. The example
uses the Speech Commands

Open Script

Fride and Frepsdece
. ge
o ke oo
shail = [
.ty IEVET “’" Ihmk Wismnam
. rrughl

'~~LadvE||zabethL .
nmlwg;ggmym le n:n,.

g wishums
| T happy

P
Pride and Prejudice and
MATLAB

Train a deep leamning LSTM network
to generate text using character
embeddings.

Open Live Script

Sequence-to-Sequence
Classification Using Deep
Learning

Classify each time step of sequence
data using a long short-term
memaory (LSTM) network.

Open Live Script

Hallar l-||nk I
"'”hmeJ \ 'A'EI” m. o

e

Word-By-Word Text
Generation Using Deep
Learning

Train a deep leaming LSTM network
to generate text word-by-word.

Open Live Script

PR
P g

Sequence-to-Sequence
Regression Using Deep
Learning

Predict the remaining useful life
(RUL) of engines by using deep
learning.

Open Live Script

s

Classify Out-of-Memory
Text Data Using Custom
Mini-Batch Datastore

Classify out-of-memory text data
with a deep leaming network using a
custom mini-batch datastore.

Open Live Script
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Sequence Classification
Using Deep Learning

Classify sequence data using a long
short-term memory (LSTM) network.

Open Live Script

Highlights

"‘ - ~ - - - - - -

Speech Command
Recognition Using Deep
Learning

Train a simple deep learning model
that detects the presence of speech
commands In audio. The example
uses the Speech Commands

Open Script

Time Series Forecasting
Using Deep Learning

Forecast time series data using a
long short-term memory (LSTM)
network.

Open Live Script

Adce s Advertures in Wonderland

" Rabist o
’ : T raap DHACA
':‘\ cat -.m‘urtle —

= herself Queen Gryphon,

ot gay |lk e w'll_e -
know ooked 'K :

Wrsts 06 thinQooeosous
. Hatter think Al Py offK?ng‘

= Al CE ki,

round Wel'lt go"tue ‘?gam come e

l..\_.:e‘ - begenu dOWﬂ ge‘ Wy
T head fought frstway e

7\ '
Word-By-Word Text

Generation Using Deep
Learning

Train a deep leaming LSTM network
lo generate text word-by-word.

Open Live Script
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Let’s try it out!

Exercise: Work_TimeSeriesForecastingLSTMs.mlix
in folder 06-LSTMExercise
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PREPARE DATA TRAIN MODEL DEPLOY SYSTEM

Model design, Multiplatform code
Hyperparameter §j generation (CPU,
e
J’

() Data access and a
N preprocessing v

/7 Ground truth labeling :El_.

Simulation-based
data generation

h lteration

tuning GPU)

Model exchange
across frameworks

Edge deployment

Hardware-
accelerated
training

and Refineméni A /

Enterprise
Deployment
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Deployment and Scaling for A.l.

4 )

MATLAB

[ Embedded Devices ]4— EE : - —P[ Enterprise Systems ]

Ly - T
‘
¥ . J
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Deploying Deep Learning Models for

Inference -
(ll'ltel) MK L-DNN
Ooc?" Library
\%%
?‘
W
NVIDIA
Products cuDNN
n‘"DIA Libraries
Deep Learning
Networks 4@
Q

EN ARM
Compute
Library
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2\ 0.07% notebook
ooée
«\y@ R — -
"\ @V Desktop CPU

, NVIDIA
Coder GPU Coder * TensorRT &

Products cuDNN

NVIDIA. Libraries

Deep Learning
Networks

Raspberry Pi board
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With GPU Coder, MATLAB is fast

Single Image Inference (Titan V, Linux)

R2019a

GPU Coder Is faster
than TensorFlow,
MXNet and Pytorch

N
o
o

B TensorFlow
B MXNet
B GPU Coder

01 | = PyTorch

T
@
2
@
o
)
©
E

N
o
o

0
ResNet-50 VGG-16 Inception-V3
Intel® Xeon® CPU 3.6 GHz - NVIDIAlibraries: CUDA10 - cuDNN 7 - Frameworks: TensorFlow 1.13.0, MXNet1.4.0 PyTorch 1.0.0
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GPU Code Generation with YOLOv2

* You Only Look Once

* Real-time object detector
YOLOv2 * 1000x faster than R-CNN

* Autonomous driving, traffic monitoring

Decode -
Predictions

Predictions
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GPU Coder Demo

Deploying our deep network on a GPU




TECHS(QURCE

Improving and Understanding Network
Accuracy
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Common Network Architectures - Sighal Processing

Convolutional Neural Networks (CNN)

Convolution
Convolution
Pooling
-
-
Convolution

Convolution
FC
Fully Connected

RelU
rectified linear units
Pooling

RelLl
rectified linear units
Pooling
RelLU
rectified linear units
Pooling
Rell)
rectified linear units

l[ayers to support

by

Long Short Term Memory (LSTM) Networks

o
\
J

- o

Feature Engineering

81 e E—_— o
B B
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Amplitude

Speech Recognition Example

Audio signal - Spectrogram - Image Classification algorithm

Frequency

Time
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4. Figure 6 =
File Edit View Insert Tools Desktop Window Help

Dede | @ 0EE| K E

0.2 T T T T T T T

015 m

2000 4000 6000 8000 10000 12000 14000 16000

Speech Recognition using CNNs
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Example: Speech Command Recognition with Deep Learning

Traina Convolutional Neural Network
(CNN) to recognize speech commands

* Work with Google's speech command dataset

* Leverage:
— audioDatastore (Read and manage large datasets)

— melSpectrogram (Transform 1D signalsinto 2D
images using perceptually-spaced frequency scaling)

* Prototype trained network in real-time on live audio



https://research.googleblog.com/2017/08/launching-speech-commands-dataset.html
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What is Reinforcement Learning?

@\ Mechanics Explorers - Mecharics Explorer

*  Whatis Reinforcement Learning? e

File Explorer Simulat
B W@d X 0TS P e | 2 6| view convention: Z up 0¥ Top) vdkEeeddl 9 e
Mechanics Explorer-walkingRobatRL2D_forViz

BOBEDO

— Type of machine learning that
trains an ‘agent’ through
repeated interactionswith an
environment

* How does it work?

— Through a trial & error process
that uses a reward system to
maximize success

@@l

®| vx —F— Time 1900630
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Reinforcement Learning enables the use of Deep Learning for
Controls and Decisinn Makine Applications

\

Robotics

Autonomous driving
Controls

A.l. Gameplay
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How Does Reinforcement Learning Work?

; Foggart 1

Fdg (3t Wiew npet Toch  Dasktop  Window  Holp

Dagdaa0EsE
STATE ACTION

REWARD

Fle E  Yiew Inset Took Dwiklep  Window Help

DaadsABE &

[ENVIRONMENT }

1
= 10
1o
=
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POP QUIZ

Results will be reported to your manager
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What is the difference between Machine Learning and Deep
Learning?

A. Deep learning is machine learning done really far
underground.

B. Idon’t know, | didn’t pay attention, | actually don’t even
work here, | just show up to these things.

C. Machine learning requires manual feature extraction while
deep learning automatically extracts features making it end-
to-end learning
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What is the difference between Machine Learning and Deep
Learning?

A. Deep learning is machine learning done really far
underground.

B. Idon’t know, | didn’t pay attention, | actually don’t even
work here, | just show up to these things.

C. Machine learning requires manual feature extraction while
deep learning automatically extracts features making it end-
to-end learning
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O MmO O ®m® >

Which of the following is not an application of deep
learning?

Image classification
Speech recognition
Automated driving

. Filtering applications like rain removal

Recognizing people’s faces on your phone’s photo app
Building a hotdog/not-hotdog classifier

. None of the above
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Which of the following is not an application of deep
learning?

. Image classification

. Speech recognition

. Automated driving

. Filtering applications like rain removal
. Recognizing people’s faces on your phone’s photo app
. Building a hotdog/not-hotdog classifier

. None of the above
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Which of the following is NOT a layer in deep networks?

. Fully Connected Layer
. Softmax Layer
. Classification Layer
. Convolution Layer
RelLu Layer
MaxPooling Layer
. Banana Layer (classifies all objects as Banana)
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Which of the following is NOT a layer in deep networks?

. Fully Connected Layer
. Softmax Layer
. Classification Layer
. Convolution Layer
RelLu Layer
MaxPooling Layer
. Banana Layer (classifies all objects as Banana)
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What does the Fully Connected Layer do?

A. Calculates a score for each category
B. Ensures your layered sandwiches stay Fully Connected

C. Saves you 15% or more on car insurance
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What does the Fully Connected Layer do?

A. Calculates a score for each category
B. Ensures your layered sandwiches stay Fully Connected

C. Saves you 15% or more on car insurance
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How do we perform transfer learning?

A. Change every other layer of our network to a softmax
layer

B. Transfer all data from the CPU to the GPU

C. Load in a pre-trained network, modify the last few
layers, and train it on our data.
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How do we perform transfer learning?

A. Change every other layer of our network to a softmax
layer

B. Transfer all data from the CPU to the GPU

C. Load in a pre-trained network, modify the last few
layers, and train it on our data.
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What are three hyperparameters that have a major impact on
training time and accuracy?

A. Network Architecture
B. Mini Batch Size
C. Learning Rate

D. Flux Capacitor
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What are three hyperparameters that have a major impact on
training time and accuracy?

A. Network Architecture
B. Mini Batch Size
C. Learning Rate

D. Flux Capacitor




TECHS()URCE

. What is loss?
A. The opposite of a win

B. The state or feeling of grief when deprived of
someone or something of value

C. A measurement of error between predicted labels
and actual labels. Loss has an inverse relationship
with score, and our goal is to minimize loss.

D. All of the above
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What is loss?

A. The opposite of a win

B. The state or feeling of grief when deprived of
someone or something of value

C. A measurement of error between predicted labels
and actual labels. Loss has an inverse relationship
with score, and our goal is to minimize loss.

D. All of the above
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Which of the following statements is false?

. MATLAB makes it easy to import pre-trained models through add-ons
and model importers

MATLAB supports the entire deep learning workflow including
labeling, training, and deployment

MATLAB has visual training plots that allow you to see accuracy and
loss during training

. We do a great job of subtly marketing MATLAB’s deep learning
capabilities
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Which of the following statements is false?

. MATLAB makes it easy to import pre-trained models through add-ons
and model importers

MATLAB supports the entire deep learning workflow including
labeling, training, and deployment

MATLAB has visual training plots that allow you to see accuracy and
loss during training

. We do a great job of subtly marketing MATLAB’s deep learning
capabilities
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Free Seminar: ADAS and Automated Driving Development Using MATLAB

and Simulink

Examples of how you can use MATLAB and Simulink to develop
automated driving algorithms

Sensor models & \
model predictive control

Bd et e _ ,\ﬁ\_\?\’:\/\ﬁ\/q =
N

( Deep learning
N

Perception
! P

/ Sensor fusion

with live data Path planning \

.

wa TN

l lmmwilll

4

Location Venue Start Date End Date

Santa Clara, CA  MathWorks Office (Mission Towers, Floor 1) 29 Mar 2018 - 9:00 AM 29 Mar 2018 - 12:00 PM

Overview

Do you have an open and flexible visualization tool to gain insight from vision, radar, and LIDAR data?
How quickly can you apply the latest deep learning research to vision perception development?
Are you able to design sensor fusion and control in simulation, before going to the test vehicle?

In this seminar, MathWorks engineers will demonstrate several new technologies to accelerate ADAS and
automated driving development with MATLAB and Simulink.

H igh \ighfs
They will introduce the latest ADAS and automated driving development tools from MathWarks, including

+ Visualize recorded and live sensor data
*  Framework for sensor fusion algorithm design and test
* Deep learning for LIDAR and camera processing

Control design in simulation
They will demonstrate new products and ADAS-extensions of existing MathWorks products, including

Automated Driving System Toolbox
* Model Predictive Control Toolbox
+ Vehicle Network Toolbox
* Robotics Systems Toolbox

+ GPU Coder

Who Should Attend

Engineers and managers working on ADAS and automated driving system, algorithm, and software
development.



Questions?
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‘ MathWorks: can help you do Deep Learning

Free resources

* Guided evaluations with a MathWorks
deep learning engineer

Proof-of-concept projects
- Deep learning hands-on workshop
«  Seminars and technical deep dives
+  Deep learning onramp course

More options

Consulting services

Training courses

Technical support

Advanced customer support

Installation, enterprise, and cloud
deployment

Deep Learning Paid Training



https://matlabacademy.mathworks.com/R2017b/portal.html?course=deeplearning
https://www.mathworks.com/training-schedule/training_classes/show?class_format=%22Public+Self+Paced%22&url=deep-learning-with-matlab
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Filters

Activations

e Custom visualizations

o . H H Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva, Antonio Torralba
Exam P le: Class Activation Ma PS Computer Science and Artificial Intelligence Laboratory, MIT

{bzhou, khosla, agata, oliva,torralba}@csail.mit.edu

Abstract

In this work, we revisit the global average pooling layer
proposed in [ ! 7], and shed light on how it explicitly enables
the convolutional neural network (CNN) to have remark-
able localization ability despite being trained on image-
level labels. While this technique was previously proposed
as a means for regularizing mraining, we find that it actu-
ally builds a generic localizable deep represeniation that
exposes the implicit antention of CNNs on an image. Despite

Visualizations for Understanding Network Behavior

Learning Deep Features for Discriminative Localization

Brushing teeth


http://cnnlocalization.csail.mit.edu/Zhou_Learning_Deep_Features_CVPR_2016_paper.pdf
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A Practical Example of Reinforcement Learning

Training a Self-Driving Car

( AGENT \

STATE

Policy update

Reinforcement
Learning

k Algorithm )

REWARD

[ENVIRONMENT }

ACTION

Vehicle’s computer learns how to drive...
(agent)
using sensor readings from LIDAR, cameras,... (state)

that represent road conditions, vehicle position,...
(environment)

by generating steering, braking, throttle commands,... (action)
based on an internal state-to-action mapping...  (policy)

that tries to optimize driver comfort & fuel efficiency...
(reward).

The policy is updated through repeated trial-and-error by a
reinforcementlearning algorithm
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What is Reinforcement Learning?

Type of machine learning that trains an ‘agent’ through
repeated interactionswith an environment

How does it work?

Through a trial & error process that maximizes success

Reinforcement learning is gaining momentum

Share of papers that mention it compared to any type of machine learning

50.0% machine
learning

40.0%

30.0%

20.0%

“ reinforcement

learning
10.0%

0.0%

2000 2002 2004 2006 2008 2010 2012 2014 2016 2018

Chart: MIT Technology Review * Source: arXiv.org * Created with Datawrapper
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Why should you care about Reinforcement Learning?

It enables the use of deep learning for controls and decision-making applications

Controls

Autonomous driving

Game Play
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[ Machinel earning } Reinforcement learning:
- N ~ = Learning through trial & error
Unsupervised Supervised Learning Reinforcement [mteractlon]
Legrlning [Labeled Data] Learning
d i .
K[No Labele Data]/ L ) [Interaction Data] . Complex problems typlcally
| | | | | need deep learning
Clustering Classification }[ Regression CDJSL?:\OQ”ZZ Control > [Deep Reinforcement
) S ’ Learning]
g
\ peepLearning J = |t's about learning a

behavior or accomplishing a
task
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Reinforcement Learning vs Machine Learning vs Deep Learning

[ Machine Learning ]

Unsuper_vised Supervised Learning Relnforcgment
Learning Learning

[No Labeled Data] [Labeled Data] [Interaction Data]

M\;\ﬁ
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Reinforcement Learning vs Machine Learning vs Deep Learning

[ Machine Learning ]

Unsuper_vised Supervised Learning Relnforcgment
Learning Learning

[No Labeled Data] [Labeled Data] [Interaction Data]

| G G
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[ Machine Learning J

Unsupervised Reinforcement

Learning
[No Labeled Data]

Supervised Learning

[Labeled Data] Learning

[Interaction Data]
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[ Machine Learning J

Unsuper_vised Supervised Learning Relnforcgment
Learning Learning

[No Labeled Data] [Labeled Data] [Interaction Data]
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Documentation

https://www.mathworks.com/help/reinforcement-learning/

Examples
https://www.mathworks.com/help/reinforcement-learning/examples.html

Product Page
https://www.mathworks.com/products/reinforcement-learning.html

Tech Talks
https://www-integl.mathworks.com/videos/tech-talks/controls.html



https://www.mathworks.com/help/reinforcement-learning/
https://www.mathworks.com/help/reinforcement-learning/examples.html
https://www.mathworks.com/products/reinforcement-learning.html
https://www-integ1.mathworks.com/videos/tech-talks/controls.html

Dynamic Solutions. Precise Results.




